This article was downloaded by:

On: 26 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

Reaction of Epichlorohydrin with Adenosine and Uridine- 5'-monophosphates

Khurshid Alam Khana; Kaniz Fizza

^a Pharmaceutical and Fine Chemical Research Centre, Pakistan Council of Scientific and Industrial Research Laboratories, Karachi, Pakistan

To cite this Article Khan, Khurshid Alam and Fizza, Kaniz(1993) 'Reaction of Epichlorohydrin with Adenosine and Uridine- 5'-monophosphates', Nucleosides, Nucleotides and Nucleic Acids, 12: 2, 175 — 183

To link to this Article: DOI: 10.1080/07328319308021204 URL: http://dx.doi.org/10.1080/07328319308021204

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

REACTION OF EPICHLOROHYDRIN WITH ADENOSINE AND URIDINE- 5'-MONOPHOSPHATES

Khurshid Alam Khan* and Kaniz Fizza

Pharmaceutical and Fine Chemical Research Centre,

Pakistan Council of Scientific and Industrial Research Laboratories,

Karachi-75280, Pakistan

ABSTRACT

The reaction of epichlorohydrin with 5'-AMP and 5'-UMP in aqueous buffer at pH 5.8 and 37°C gave two principal products for each nucleotide. These products are characterised as N¹-(3-chloro-2-hydroxypropyl) adenine, 1; 3'-O-(3-chloro-2-hydroxypropyl)-5'-AMP, 2; 3'-O-(3-chloro-2-hydroxypropyl)-5'-UMP, 3; and N³-(3- chloro-2-hydroxypropyl)-5'-UMP, 4. The structure of the products are assigned using UV spectroscopy, ¹H and ¹³C-NMR spectroscopy as well as FAB and high resolution mass spectrometry.

INTRODUCTION

Adducts of nucleic acids with carcinogens and mutagens are of interest due to their possible implications in the process of carcinogenesis and mutagensis. Due to their high chemical reactivity, aliphatic epoxides are widely used chemical intermediates in industry and at the same time reported to be responsible for mutagenicity and production of chromosomal aberrations. Thus solutions of ethylene oxide produce mutations² in *S. typhimurium* TA 1535, reverse mutations in *Neurospora crassa*³ and chromosomal aberrations in mammalian somatic cells. Chemically ethylene oxide reacts with DNA to give N⁷- hydroxyethylguanine. Propylene oxide in a limited study has been reported to be carcinogenic in rats, produces reverse mutations in *Neurospora crassa*⁷ and chemically reacts with DNA at neutral pH to yield N⁷-(2-hydroxypropyl) guanine and N³-(2-hydroxypropyl) adenine. Chloroethylene oxide and chloroacetaldehyde behave in their reactions with nucleic acid bases as bifunctional alkylating agents eventually yielding cyclic adducts. 9,10,11

Epichlorohydrin is a widely used industrial chemical intermediate, it induces reverse mutations in *S. typhimurium* G 46 and TA 100 tester strains¹² and also induces chromosomal aberrations in bone marrow of IRC mice.¹³ Information about the chemical reactivity of epichlorohydrin with nucleotides is lacking in the literature which should be of interest due to its mutagenic properties. The present communication describes the reaction of epichlorohydrin with 5'-AMP and 5'-UMP under mild aqueous conditions, the characterisation of new products obtained has been done using modern spectroscopic techniques.

RESULTS AND DISCUSSION

The reaction of 5'-AMP with epichlorohydrin was carried out in sodium acetate buffer at pH 5.8 and 37°C for 7 days, two new products of Rf 0.71 and 0.64 in solvent A, were detected on TLC over cellulose apart from unreacted starting material of Rf 0.18. The products were separated by partitioning over microcrystalline cellulose column using solvent A. The compound of Rf 0.71 was eluted in fractions 28-45 and its UV spectrum at pH 1 exhibited \(\lambda_{\text{max}}\) at 260 nm which was shifted to 270 nm at pH 12, the shift resembled that of an N¹ substituted adenine 14 rather than an N1 substituted nucleoside or nucleotide. 15 The 1H-NMR spectrum of the product was devoid of any ribose signals and exhibited signals due to adenine ring and alkyl side chain. Two singlets integrating for one proton each at δ 8.2 and 8.1 were assigned to H-8 and H-2 of adenine ring respectively. A multiplet at δ 3.58 for two protons was ascribed to methylene protons H-1 of the side chain. Another multiplet at δ 3.81 was ascribed to the methine proton H-2 and the multiplet at δ 3.52 for two protons was ascribable to methylene protons H-3 bearing the chlorine, these assignments agree with the values reported in the literature. 16 The evidence derived from the UV spectrum and 1H-NMR led this compound to be characterised as N¹-(3-chloro-2-hydroxypropyl) adenine 1, which was further confirmed by mass spectral analysis. FAB mass spectrum in the positive mode showed the molecular ion [M +] at m/z 227 and high resolution mass at m/z 227.0572 which corresponded with the molecular formula C8H10ClN5O. The presence of the chlorine was confirmed by $[M+2]^+$ peak at m/z 229 which had a relative abundance of 35% of that of molecular ion due to the isotope ³⁷Cl. The peak matching analysis of important fragments also confirmed this assignment. Thus, high resolution mass showed an ion at m/z 192.6882 due to fragment [M-Cl] and molecular formula C₈H₁₀N₅O and an ion at m/z 178.0726 corresponding to ion [M-CH₂Cl] ⁺ and molecular formula C₇H₈N₅O.

The UV spectrum of the product R_f 0.64 was identical to that of 5'-AMP at pH 1 and 12 indicating an unsubstituted base moiety while paper electrophoresis

TABLE-1. ¹³C-Chemical shifts (ppm) in the NMR spectra (D₂O) of some 3-chloro-2-hydroxypropyl derivatives of 5'- AMP and 5'-UMP.

Nucleotide derivative		Bas	Base carbons	S			Ribose	Ribose carbons			Alkyl	Alkyl side chain	lin
	C-2	C-4	C-5	C-6	C-8	C-1'	C-2′	C-3'	C4,	C-5′	C-1	C-2	C-3
5'-AMP.2Na.	147.99	147.99 153.08	121.23	151.09	144.87	90.63	77.36	73.01	86.92	26.99	ł	l	1
3'-(3-chloro-2- hydroxypropyl)-5'-AMP, 2	148.34 VIP, 2	148.34 152.00 2	121.76	150.20	144.84	90.33	76.91	88.11	88.24	66.84	65.20	72.80 47.00	47.00
5'-UMP.2Na.	168.99	168.99 154.54	105.26	144.33	I	85.98	72.37	76.53	85.90	67.10	I	I	1
3'-(3-chloro-2- 168.24 hydroxypropyl)5'-UMP.Na2, 3	168.24 IP.Na2, 3	154.76	104.75	142.96	I	92.0	72.79	84.52	86.89	66.21	65.23	72.50 49.70	49.70
N ³ -(3-chloro-2- 168.0' hydroxypropyl)5'-UMP.Na2, 4	168.07 IP.Na2, 4	154.80	104.40	142.60	1	86.84	72.04	76.53	84.50	66.24	63.42	71.83 46.20	46.20

also suggested an unsubstituted phosphate. The ¹H-NMR spectrum of the product exhibited the H-8 and H-2 signals of the adenine base at δ 8.26 and 8.17 respectively which were assigned on the basis of literature values.¹⁷ The anomeric proton H-1' was located upfield as compared to that of unsubstituted 5'-AMP indicating substitution of 3'-OH group 18 by epichlorohydrin. The protons of the alkyl group appeared at δ 4.12, a multiplet for two methylene protons ascribed to H-1, a multiplet at δ 3.93 for 1H, ascribed to methine H-2 and another multiplet for 2H at δ 3.62 ascribed to methylene protons H-3 which bears the chlorine. The product was therefore assigned as 3'-O-(3-chloro-2-hydroxypropyl)-5'-AMP, 2. The structure is confirmed by FAB (negative ion) and high resolution mass spectrometry. The FAB (negative ion) MS exhibited [M-H] at m/z 439 and high resolution mass at m/z 439.0662 corresponding to exact molecular formula, C₁₃H₁₉ClN₅O₈P. Another peak at m/z 441 with relative abundance of 35% of that of molecular ion was observed which corresponds to the ion [M-H+2] and molecular formula C₁₃H₁₉. ³⁷ClN₅O₈P. Peak matching analysis of ions [M-Cl] and [M- CH₂Cl] were also in complete agreement with the assigned structure. In order to further confirm the site of reaction at the ribose moiety use of ¹³C-NMR was

made as the substitution at ribose hydroxyls leads to shifts of larger magnitudes for the substituted carbon atom. ^{19,20} The ¹³C-NMR of 2 indeed exhibited a pronounced downfield shift of C-3' to the extent of 15 ppm (Table-1), confirming the structural assignment.

The reaction of 5'-UMP with epichlorohydrin under similar conditions showed the formation of two new products of Rf 0.77 and 0.73 on TLC over cellulose in solvent A. The product of Rf 0.77 was obtained in fractions 23-41 on partition column chromatography over cellulose using solvent A. The UV spectrum at pH 1 and 12 as well as electrophoretic mobility in buffer I and II were identical to 5'-UMP indicating an unsubstituted base as well as phosphate moieties. The ¹H-NMR spectrum in D₂O showed signals for H-6 and H-5 of the base at δ 7.94 and 5.96 respectively as sharp doublets of 8 Hz each, while a doublet of 4.3 Hz for anomeric proton H-1' was located at δ 5.94. As compared to the anomeric proton of 5'-UMP the compound showed an upfield shift indicating substitution of 3'-hydroxyl of ribose. 18 The protons of alkyl group were located at δ 4.11, 3.94 and 3.64 as multiplets integrating for 2H, 1H and 2H and were assigned to H-1, H-2 and H-3 protons respectively. FAB (negative ion) MS exhibited [M-H] at m/z 459 and high resolution MS exhibited exact mass at 459.0126 corresponding to the correct molecular formula C₁₂H₁₅ClN₂Na₂O₁₀P. The presence of [M-H+2] peak at m/z 461 with relative abundance of 35% of that of molecular ion also confirmed the presence of chlorine. The peak matching analysis of other fragments [M-H-Cl] at m/z 424 and [M-H-CH₂Cl] at m/z 410 completely supported the structure of the product as 3'-O-(3-chloro-2-hydroxypropyl)-5'-UMP, disodium salt 3. The location of the substitution at the 3'-hydroxyl of ribose was further confirmed by ¹³C-NMR spectrum (Table-1). As expected the 3'-carbon of ribose was shifted to about 8 ppm downfield as compared to that of 5'-UMP.

The product of R_f 0.73 in solvent A was obtained in fractions 52-81 on cellulose column chromatography. The UV spectrum of this product exhibited a characteristic shift of λ_{max} from 260 nm at pH 1 to 264 nm at pH 12 indicating substitution at N³-position of the uridine. The paper electrophoresis in buffers I and II did not show phosphate esterification, the H-NMR spectrum exhibited signals for H-5 and H-6 protons as 8 Hz doublets at δ 5.98 and 8.01 respectively while the anomeric proton H-1' appeared at δ 6.02 as a sharp doublet of 4.3 Hz, identical to that of 5'-UMP indicating an unsubstituted ribose. The protons of alkyl side chain resonated at δ 4.01 a multiplet for H-1, the methine proton H-2 at δ 3.91 and the halogen bearing methylene protons H-3 at δ 3.53, the product was therefore assinged as N³-(3-chloro-2-hydroxypropyl)-5'-UMP as the disodium salt

4. The assignment was further confirmed by FAB (negative ion) MS, which exhibited [M-H] at m/z 459, high resolution MS gave exact mass at m/z 459.0126 corresponding to exact molecular formula C₁₂H₁₅ClN₂N₂O₁₀P. The signal for $[M-H+2]^{-1}$ due to 37 Cl was localed at m/z 461 whose relative abundance was 35% of that of molecular ion. The peak matching of other fragments also corresponded with the structure. The ¹³C-NMR spectrum (Table-1) also showed an unsubstituted ribose moiety. The results of this study show that epichlorohydrin reacts with 5'-AMP and 5'-UMP, under the reported reaction conditions as an alkylating agent principally through opening of epoxide ring as has been reported for other epoxides. 5,14 The results described in this publication deserve comments, particularly the formation of 3'-O-alkyl derivatives of 5'-AMP and 5'-UMP. Martin et.al. 18 have reported the formation of both 2'-O- and 3'-O- methyl derivatives of adenosine and cytidine by using diazomethane in hot 1,2-dimethoxyethane, the yield of 2'-O-isomer being three times greater than that of 3'-O-isomer. It is known that alkylation of nucleosides is dependent upon the reaction conditions used such as nature of alkylating agent, pH of the reaction, nature of the solvent etc. and therefore the absence of 2'-O-alkylation may possibly be attributed to the reaction conditions employed during the present studies. The formation of N¹-alkylated adenine during the reaction reflects a greater sensitivity of purine nucleotides towards depurination as compared to pyrimidine nucleotides. In the literature²² methylation of 5'-AMP with dimethyl sulfate at pH 4.5 and 6.8-7.4 has been reported to give N¹-methyl adenine as one of the products and therefore the isolation of N¹-alkylated adenine 1 as one of the products may be a result of depurination of 5'-AMP. It is expected that the reaction of 5'-UMP should also result into the formation of a disubstituted product containing alkyl groups both at the base and ribose, but such a product was not detected, however formation of such a derivative cannot be completely ruled out.

EXPERIMENTAL

5'-AMP and 5'-UMP disodium salts were from BDH (England). Partition column chromatography over microcrystalline cellulose was carried out in a glass column (50x1.5 cm), 5 ml fractions were collected using solvent A, (ethanol:0.5 M, ammonium formate pH 7.4; 7:3 v/v). For ascertaining the purity of products thin layer precoated cellulose plates (E. Merck) were used, solvents being A; solvent B (isopropanol:ammonium hydroxide:water; 7:1:2 v/v) and solvent C (n-propanol:ammonium hydroxide:water; 55:10:35 v/v). UV spectra were run on a Unicam SP-500 spectrometer. ¹H and ¹³C-NMR spectra were determined on Bruker AM-300 spectrometer as 5 mg/0.5 ml solutions in D₂O. For ¹³C-NMR, DSS

was used as the internal standard. Paper electrophoreses was carried out on Whatman No. 1 strips (43.5x8.8 cm) at 40 volts and 18 Amps. for two hours, using buffer I, 0.05 M, phosphate, pH 8.5 and buffer II, 0.1 M acetate pH 4.3. FAB-MS and peak matching analysis were recorded on Finnigan MAT-312 mass spectrometer connected to PDP 11/34 computer system.

 N^{I} -(3-chloro-2-hydroxypropyl) adenine, 1. 5'-AMP (182 mg) was incubated with epichlorohydrin (0.16 ml) in sodium acetate buffer (5 ml) pH 5.8 at 37° for 7 days. The reaction mixture was concentrated to dryness under vacuum below 40°C, dissolved in solvent A (3 ml) and loaded on cellulose column. The fractions were monitored on cellulose TLC and the product, which appeared in fractions 28-45 was pooled, solvent was evaporated under vacuum and dried over P₂O₅, to yield an amorphous powder (42 mg), R_f solvent A, 0.71, solvent B, 0.58 and solvent C, 0.62. UV, pH 1, λ_{max} 260, λ_{min} 230 nm; pH 12 λ_{max} 270, λ_{min} 232 nm. ¹H-NMR (300 MHz): δ 3.58 (m, 2H, -CH₂); 3.81 (m, 1H, -CH-); 3.52 (m, 2H, -CH₂Cl); 8.10 (s, 1H, H-2); 8.20 (s, 1H, H-8). FAB (positive ion) MS: m/z 227 [M]⁺; 229 [M+2, 35% of M⁺], 192, 178. High resolution mass: C₈H₁₀ClN₅O, calcd. 227.0572 found 227.0574; [M-Cl]⁺ C₈H₁₀N₅O, calcd. 192.0882, found 192.0885; [M-CH₂Cl]⁺, C₇H₈N₅O, calcd. 178.0726 found 178.0729.

3'-O-(3-chloro-2-hydroxypropyl)-5'-AMP, **2**. The product which appeared in fractions (60-84) was pooled, solvent was evaporated *in vacuo* below 40°C to get an amorphous hygroscopic powder (48 mg); Rf solvent A 0.64, solvent B 0.46 and solvent C 0.52. UV: pH 1 λ_{max} 260 nm λ_{min} 230 nm; pH 12 λ_{max} 260 nm and λ_{min} 230 nm. Paper electrophoresis buffer I 8.1 cm (AMP 8.1 cm), buffer II 5.1 cm (AMP 5.1 cm). ¹H-NMR, δ = 4.12 (m, 2H, -CH₂), 3.93 (m, 1H, -CH-), 3.62 (m, 2H, -CH₂Cl), 4.11 (m, 2H, H-5'), 5.91 (d, J = 4.8 Hz, 1H, H-1'), 8.26 (s, 1H, H-8), 8.27 (s, 1H, H-2). FAB (negative ion) MS: m/z 439 [M]⁻, 441 [M + 2, 35% of M]. High resolution mass, C₁₃H₁₉ClN₅O₈P. calcd. 439.0662 found 439.0660. The ion [M-Cl]⁻C₁₃H₁₉N₅O₈P calcd. 404.0973, found 404.0971 and [M-CH₂Cl], C₁₂H₁₇N₅O₈P calcd. 390.0813 found 390.0815.

3'-O-(3-chloro-2-hydroxypropyl)-5'-UMP, Disodium salt, 3. 5'-UMP (184 mg) was reacted with epichlorohydrin (0.16 ml) in 1.25 M sodium acetate buffer pH 5.8 (5 ml) for 7 days at 37°C. The crude reaction mixture on cellulose TLC showed the formation of two new products. The reaction mixture was evaporated to dryness in vacuo below 40°C, dissolved in solvent A (5 ml) and chromatographed over microcrystalline cellulose column using solvent A. The first product appeared in fractions 23-41. The fractions were pooled and evaporated to dryness to yield an

amorphous powder (42 mg), R_f solvent A 0.77, solvent B 0.43 and solvent C 0.68. UV: pH 1, λ_{max} 260 nm, pH 12 λ_{max} 260 nm. Paper electrophoresis buffer I 9.4 cm (5'-UMP, 9.4 cm). ¹H-NMR (300 MHz): δ 4.11 (m, 2H, -CH2), 3.94 (m, 1H, -CH), 3.64 (m, 2H, CH2-Cl), 5.94 (d, J=4.3 Hz, 1H, H-1'), 5.96 (d, J=8.1 Hz, 1H, H-5), 7.94 (d, J=8.1 Hz, 1H, H-6). FAB (negative ion) MS: m/z 459 [M-H], 461 [M-H+2, 35% of M-H]. High resolution mass C12H15ClN2Na2O10P, calcd. 459.0126 found 459.0122. The ion [M-H-Cl] C12H15N2Na2O10P, calcd. 424.0262 found 424.0260 and the ion [M-H-CH2Cl] C11H13N2Na2O10P, calcd. 410.0105 found 410.0103.

 N^3 -(3-chloro-2-hydroxypropyl)-5'-UMP-disodium salt, 4. The fractions (52-81) containing the product were pooled and worked up in the manner described above to get an amorphous powder (52 mg), Rf solvent A 0.73, solvent B 0.40 and solvent C 0.64. UV: pH 1 λ_{max} 260 nm, pH 12 λ_{max} 265 nm. Paper electrophoresis buffer I 8.8 cm (5'-UMP 8.8 cm), buffer II 3.2 cm, (5'-UMP 3.2 cm). ¹H-NMR (300 MHz): δ 4.01 (m, 2H, -CH₂), 3.91 (m, 1H, -CH), 3.53 (m, 2H, -CH₂Cl), 4.16 (dd, 2H, H-5'), 4.27 (m, 1H, H-4'), 6.02 (d, J=4.3 Hz, 1H, H-1'), 5.98 (d, J=8.0 Hz, 1H, H-5), 8.01 (d, J=8.0 Hz, 1H, H-6). FAB (negative ion) MS: m/z 459 [M-H]^T, 461 [M-H+2, 35% of M-H^T], 424, 410. High resolution MS: C₁₂H₁₅ClN₂Na₂O₁₀P, calcd. 459.0126 found 459.0122. The ion [M-H-Cl^T] C₁₂H₁₅N₂Na₂O₁₀P, calcd. 424.0262 found 424.0260 and the ion [M-H-CH₂Cl]^T C₁₁H₁₃N₂Na₂O₁₀P, calcd. 410.0105 found 410.0103.

ACKNOWLEDGEMENT

The authors thank Dr. S.S.H. Rizvi, Director General of these laboratories for his interest and encouragement throughout these studies.

REFERENCES

- 1. B. Singer and H. Bartsch in The role of cyclic nucleic acid adducts in carcinogenesis and mutagenesis, IARC/Sc. Publication No. 70, Lyon, (1986).
- 2. U. Rannug, R. Göthe and C.A. Watchmeister, <u>Chem. Biol. Interactions</u>, 12, (3-4), 251, (1976).
- 3. H.G. Kolmark and F.J. Colby, Mol. Gen. Genetics, 401, 89, (1968).
- 4. E.E. Strekalova, <u>Toksikol. Nov. Prom. Khimschesk. Veshchestv.</u>, <u>12</u>, 72, (1971).
- 5. P. Brookes and P.D. Lawley, J. Chem. Soc. (London), 3923, (1961).
- 6. A.L. Walpole, Ann. N.Y. Acad. Sci., 68, 750, (1958).

- 7. G. Kolmark and N.H. Giles, <u>Genetics</u>, <u>40</u>, 890, (1955).
- 8. P.D. Lawley and M. Jarman, <u>Biochem. J.</u>, <u>126</u>, 893, (1972).
- 9. N.K. Kochetkov, V.N. Shibaev and A.A. Kost, <u>Tetrahedron Lett.</u>, <u>22</u>, 1993, (1971).
- 10. N.J. Leonard, CRC Crit. Rev. Biochem., 15, 125, (1984).
- 11. B. Singer and D. Grunberger, Molecular Biology of Mutagens and Carcinogens, Plenum Press, New York, (1983).
- 12. Scram, M. Cera, M. Kusernova, Biol. Zbt., 95, 451 (1976).
- 13. S.S. Epstein, E. Arnold, J. Andra, W. Bass and Y. Bishop, <u>Toxicol. Appl. Pharmacol.</u>, 23, 235, (1972).
- 14. P. Brookes and P.D. Lawley, <u>J. Chem. Soc.</u> (London), 539 (1960).
- 15. J.W. Jones and R.K. Robins, <u>J. Amer. Chem. Soc.</u>, <u>85</u>, 193 (1963).
- 16. R.M. Silverstein, Spectrometric Indentification of Organic Compounds, John Wiley & Sons, New York (1981).
- 17. I. Tazawa, S. Tazawa, J.L. Alderfer and P.O.P. T'so, Biochemistry, 11, 4931, (1972).
- 18. D.G. Martin, C.B. Reese and G.F. Stephenson, Biochemistry, 7, 1406, (1968).
- 19. P.A.J. Gorin and M. Mazurek, <u>Carbohydrate Res.</u>, <u>48</u>, 171, (1976).
- 20. F.W. Lichtenthaller, W. Eberhard and S. Braun, <u>Tetrahedron Lett.</u>, 22, 4401, (1981).
- 21. R. Thedford, et al., <u>J. Med. Chem.</u>, <u>8</u>, 486 (1965).
- 22. B.E. Griffin and C.B. Reese, Biochim. Biophys. Acta, 68, 185, (1963).

Received 9/21/92 Accepted 11/23/92